ПРО+Не используйте методические пособия в качестве самоучителя. Вам в помощь представлены эксперты и мастера реставраторы.
 

Радиоуглерод и абсолютная хронология: записки на тему (3)

Может показаться, что я уделяю слишком много внимания углеродообменной системе. Тому есть причины. Понимание ее нам пригодится в дальнейшем, когда мы будем рассматривать резервуарные эффекты и изотопное фракционирование. Также это важно для рассмотрения величин вариаций в образцах. Ну и в конечном счете, углеродообменной системе сейчас уделяется повышенное внимание. Дело в том, что от нашего понимания ее работы зависят прогнозы на будущее нашего климата, можно сказать - будущее человеческой цивилизации (посмотрите например на ожидаемое будущее при сценарии "business as usual" <http://www.dar.csiro.au/res/cm/Gh_sim.htm>). Атмосферное содержание ведущих парниковых газов, углекислого и метана напрямую завязано в эту систему. Исследованию обмена углерода, его изотопных отношений, передачи, поглощения посвящают много времени и средств. Компьютерное моделирование ведется на суперкомпьютерах. (Посмотрите пример моделирования атмосферного содержания и переноса углекислого газа <http://www.dar.csiro.au/info/co2_tran.htm>) И радиоуглерод в этих исследованиях занимает одну из ведущих ролей. Так что уж его поведение в биосфере, атмосфере, океане изучено в деталях на тысячах образцов и описано детальными моделями высокого разрешения (о различной сложности моделях, результатах моделирования, исходных данных и пр. см.

<http://www.acad.carleton.edu/curricular/GEOL/DaveSTELLA/Carbon/c_cycle_models.htm>,

<http://www.llnl.gov/str/Duffy.html>,

<http://www.cmdl.noaa.gov/ccgg/index.html>,

<http://www.pmel.noaa.gov/co2/co2-home.html>).

Ну и третья причина вариации радиоуглерода в атмосфере - внешнее воздействие, антропогенное.

Таких прямых в основном два. Первое - это массовое использование ископаемых топлив. Результаты этого у всех на виду - стремительное увеличение концентрации углекислого газа в атмосфере, с примерно 250 ppm до 360 ppm сейчас. И процесс идет с той же скоростью. По планетарным временам - просто скачком, углеродообменная система не угоняется за этим. (Метан тоже кстати вырос, удвоил свою концентрацию). Ископаемые топлива обеднены изотопом 13C и радиоуглерод в них полностью отсутствует. Это приводит к смещению изотопного отношения CO2 в атмосфере в сторону легких изотопов. В купе с эффектом от сведения лесов все это называется Зюсс эффект (рис. 2).

Ну а второе - это ядерные испытания в атмосфере в 50-е начале 60-х. При этом практически мгновенно в атмосферу было инжектировано огромное количество радиоуглерода, образующегося при атомном взрыве в азотной среде. Отношение изотопа 14 к 12 в северном полушарии в атмосфере удвоилось за лишь 5 лет (т.е. вариация в 100%). Особенностью этого воздействия была его локальность. Т.е. взрывы в основном проводились в северном полушарии, и наиболее мощные в высоких широтах. Ну и кратковременность тоже. Что дало мощный но короткий импульс, оказавшийся весьма полезным для изучения вопросов обмена радиоуглерода в реальных системах (рис. 4).


Рис. 4. Прямые атмосферные определения содержания радиоуглерода за последние пол века [взят из Q. Hua, M. Barbetti, M. Worbes, J. Head and V. A. Levchenko, Review of radiocarbon data from atmospheric and tree ring samples for the period 1950-1997 AD, IAWA Journal (the Journal of the International Association of Wood Anatomists), v. 20 (3), 1999: 261-283]. Обратите внимание на расхождение северного и южного полушарий во время атмосферных испытаний ядерного оружия. Причина - сильная несимметричность источника, основная масса взрывов, в том числе все мощные, была проведена в северном полушарии, более того, в высоких широтах. С подписанием в 1963 г. договора-моратория на ядерные испытания в трех средах этот источник практически исчез. И атмосфера быстро перемешивается, за 4 года выравнивая дисбаланс.

Вот собственно и все основные причины вариаций. Давайте посмотрим, какие же по величине вариации содержания они могут вызвать. Поскольку вновь образующийся радиоуглерод смешивается с уже находящимся в системе, вариации содержания в общем случае не будут прямо повторять вариации скорости образования. Причем необходимо учитывать характеристические времена вариации входного сигнала по сравнению с характеристическими временами углеродообменной системы. Понятно, что короткие сигналы в скорости образования будут значительно ослаблены в вариациях в содержании, в то же время длинные сигналы будут ослаблены менее значительно. Так, вариации скорости образования за счет солнечной модуляции (~ +/-25%) с примерно 11-летним периодом вызывают лишь 1% вариации в атмосферном содержании радиоуглерода. Вариации за счет солнечных космических лучей, хотя и значительны по амплитуде во время события, но за счет кратковременности вызывают вариации в атмосферном содержании за год в лучшем случае 0.5-0.7%, а чаще и вообще не видны. В других резервуарах такие короткопериодические вариации вообще не прослеживаются.

Вариации с вековым масштабом, того же солнечного происхождения вызывают вариации в атмосферном содержании в 2-4% (рис. 2) и уже могут быть замечены в усредненном биосферном сигнале и в поверхностных водах океана.

Вариации же в содержании радиоуглерода геомагнитной природы, поскольку являются самыми долгопериодическими, с характеристическими временами в тысячи лет, распространяются на всю обменную систему, с примерно одинаковой во всех резервуарах амплитудой. За последние 10 тыс. лет вариация геомагнитного поля вызвала в атмосферном содержании приблизительно 10-12% сигнал (рис. 3).

Изменения в системе углеродообмена теоретически могут вызвать какой угодно сигнал в атмосфере, достаточно лишь поиграться с обменными и резервуарными параметрами. Но если оставаться на реалистической почве, то даже для крупной климатической перестройки Плейстоцен/Голоцен атмосферный переходный сигнал был не более 6-7% от среднего значения продолжительностью в пару тысяч лет.

На последних же 10 тысячах лет климат был довольно устойчив. Были, конечно, экскурсии вроде Малого ледникового Периода. Для них атмосферный сигнал за счет небольшой вариации углеродообменной системы получается небольшим, порядка 1-2%. Вызван он в основном небольшим изменением продуктивности биосферы, изменении величины этого резервуара и скорости обмена.

Антропогенные вариации были наиболее сильными. Если Зюсс-эффект составлял лишь 3% негативного отклонения к 1946 году, то бомб-эффект проявился как импульс со 100% позитивной амплитудой в северном полушарии (65% в южном) и характерным временем полуспада в примерно 15 лет.

Теперь, рассмотрев макроскопическую картину, давайте прейдем к микроскопической.

В атмосфере углерод присутствует в основном в виде углекислого газа CO2. Есть и другие соединения, но их уровень незначителен по сравнению с CO2. Содержание его в настоящее время около 360 ppm (до этого было где-то 250-280 ppm). В основном все это изотоп 12C. Изотоп 13C составляет примерно 1%, а доля радиоуглерода 14C лишь примерно 10-12 от всех углеродных атомов.

В биосферу углерод попадает практически единственным каналом - через фотосинтез растений. Т.е. все богатство органических соединений в конечном счете начинается со ступенчатой ферментативной реакции переноса электрона и объединения молекул углекислого газа и воды в колечко глюкозы. И идет это за счет энергии солнечного света.

При переходе углекислого газа через барьер в устьицах растений и в фотосинтетической реакции происходит изотопное фракционирование. Причем величина этого фракционирования зависит от растения, условий роста, температуры, влажности и т.д. Растения предпочитают легкие изотопы (Бог знает почему, вернее, известно почему, но долгая история объяснять). Величина фракционирования измеряется в сдвиге изотопного отношения 13/12 изотопов по сравнению со эталоном - мировым стандартом. Так в атмосфере эта величина примерно -7.4 промилле (а до Зюсс эффекта была в районе -6.5 промилле). В растениях же, глюкозе и целлюлозе эта величина разная от -12 до -30 промилле. Причем растения делятся на две группы: C4 и C3 по величине фотосинтетического фракционирования. В первой эта величина лежит в районе -12 -19 промилле, а во второй -21 -29 промиле. Типичная величина для деревьев около -25 промилле. (Неплохо об изотопных исследованиях и фракционировании изложено здесь <http://www.unc.edu/courses/envr324/CarbonIsotopeStudies.htm>)

Целлюлоза в растениях относится к неподвижной фракции, т.е. будучи связана и размещена где-либо, там она и будет пребывать, не перемещаясь по растению. Другие сахара, гуминовые кислоты, разная органика, в меньшей степени лигнин (очень комплексный высший фенол) - они мобильны. Т.е. могут перемещаться по растению.

Растения в процессе своего роста постоянно обмениваются с атмосферой. Причем если днем они активно поглощают углекислый газ, синтезируя глюкозу, то ночью наоборот, выделяют углекислый газ, расходуя глюкозу - источник энергии клеток.

Таким образом у земли наблюдается дневной цикл концентрации CO2. И такой же цикл наблюдается в изотопных отношениях углерода. Наблюдается также и годичный цикл в атмосферной концентрации углерода и изотопных отношениях, обусловленный циклами растительного мира, которые контролируются либо температурой (как в высоких широтах, например) либо увлажненностью.

Целлюлоза является основным строительным материалом растений. Понятно, что у однолетних растений все построено из углекислого газа, ассимилированного за вегетационный период. Для более долгоживущих видов все немного сложнее. Впадая в неактивный период (зимовка и пр.) растение часть сахаров направляет на хранение, обычно в корневую систему (ну например клубни, луковицы). Этот материал будет использоваться на начальном этапе новой вегетации, а на следующий год новые накопления будут сделаны из свежесинтезированных сахаров. Опять-таки, свежие сахара направляются в плоды. В деревьях кольца годичного прироста также в основном строятся из новых сахаров. Однако, на начальном периоде вегетации используются накопления с предыдущего года. Таким образом, в кольце выделяют зоны так называемой "ранней" древесины и "поздней" древесины. Причем именно в ранней используются сахара предыдущего года.

Первоисточник: 
Левченко В. Радиоуглерод и абсолютная хронология: записки на тему. 18-12-2001
 
 
 
 
Ошибка в тексте? Выдели ее мышкой и нажми   Ctrl  +   Enter  .

Стоит ли самостоятельно реставрировать непрофессионалу? (2018)


  1. Технические операции требуют профессиональных навыков.

  2. Представить ход работы - это одно, а сделать - совсем другое.

  3. Не каждому памятнику пригодны стандартные методики реставрации и хранения.

  4. Некоторые методики устарели из-за выявленных деструктивных последствий.

  5. Неверно подобранные материалы сразу или в будущем нанесут вред памятнику.

  6. Если возвращаете памятнику утраченную красоту, то сохраняете ли его подлинность?

________________

В этих и во многих других вопросах разбирается только квалифицированный специалист!
  • Вам в помощь на сайте представлены эксперты и мастера реставраторы.
  • Спрашивайте, интересуйтесь, задавайте вопросы на нашем форуме.
  • Обучайтесь под непосредственным руководством опытного наставника.

 

Что Вы считаете ГЛАВНЫМ в процессе реставрации? (2018)


Есть ли у вас друзья реставраторы? (2018)


Есть ли у вас друзья реставраторы? (2018)

«Дружба — личные взаимоотношения между людьми, основанные на общности интересов и увлечений, взаимном уважении, взаимопонимании и взаимопомощи». (Дружба—Википедия)

«Знакомство — отношения между людьми, знающими друг друга». (Знакомство—Викисловарь)

ЕЖЕГОДНЫЙ КОНКУРС ЛУЧШИХ РАБОТ ВЕРНИСАЖА И ВЕБ-ПОРТФОЛИО
Система Orphus

Если вы обнаружили опечатку или ошибку, отсутствие текста, неработающую ссылку или изображение, пожалуйста, выделите ошибку мышью и нажмите Ctrl+Enter. Сообщение об ошибке будет отправлено администратору сайта.