ПРО+Не используйте методические пособия в качестве самоучителя. Вам в помощь представлены эксперты и мастера реставраторы.
 

Радиоуглерод и абсолютная хронология: записки на тему (2)

Во-первых, изменения скорости образования. Тут действуют несколько факторов:

1. Внешние вариации потока галактических космических лучей. Надо сказать, что этот поток довольно стабилен. На протяжении последних 50 тысяч лет зафиксирован лишь один период ~35 тыс. лет назад, где вероятно этот поток возрос почти вдвое в течение нескольких тысяч лет. Это связывается со вспышкой очень близкой сверхновой ~50 по от Солнца. Подчеркиваю, это была очень близкая сверхновая.

2. Солнечная модуляция потока галактических лучей. Солнце своими магнитными полями и солнечным ветром - потоком плазмы - как бы выметает из гелиосферы галактические космические лучи. Когда солнце активно, галактических лучей на орбите Земли меньше и наоборот. Вариации скорости образования из-за этой причины порядка +/-25% от среднего. Иногда, во время великих минимумов Солнца, вроде Маундеровского (1645-1740), скорость образования может вырасти на 40-50%. (рис. 2)


Рис. 2. Вариации содержания радиоуглерода в атмосфере по кольцам деревьев за последние 400 лет. Хорошо видны эффекты солнечной модуляции, особенно проявления глобальных солнечных минимумов, а также антропогенное воздействие - Зюсс-эффект.

3. Солнечные космические лучи. За счет низкой по сравнению с галактическими энергии не дают значительный вклад в образование. Даже в случае очень сильных вспышек усредненный за год эффект мал.

4. Геомагнитное поле. Оно, отклоняя или не пропуская к атмосфере галактические космические лучи, которые в основном являются заряженными частицами - протонами, может воздействовать на скорость образования. Чем поле сильнее, тем образования меньше. За последние десять тысяч лет поле было наиболее сильным 1500 лет назад, примерно в 1.3 раза сильнее, чем сейчас. Скорость образования при этом была около 0.88 от современной. Ну а до этого поле было все время меньше (за последние 10 К лет), с минимумом около 5 тыс. лет назад в 0.5 современного (скорость образования примерно в 1.5 раза больше). Проявление этого воздействия в радиоуглероде иллюстрировано на рис. 3.


Рис. 3. Вариации атмосферного содержания радиоуглерода в Голоцене, за последние ~8 тысяч лет (по измерениям в кольцах деревьев).
Верхняя шкала - годы до наших дней, нижняя - календарные годы. Тренд объясняется вариацией геомагнитного поля и очень хорошо согласуется с имеющимися архео и палеомагнитными данными.

Геомагнитное поле действует также еще одним образом. Поскольку его "отражающая сила", грубо говоря, зависит от угла к силовым линиям, под которым налетает частица, то сильнее всего эффект "прикрытия" будет в экваториальных районах, практически отсутствуя на полюсах. Следствие этого то, что в стратосфере образование радиоуглерода (да и других радиоизотопов) значительно, в разы выше в полярных районах. А вот в тропосфере это не так. Дело в том, что реакции в тропосфере вызываются лишь первичными частицами с относительно более высокой энергией (чтобы пробить всю стратосферу), а они заметно меньше чувствительны к магнитному экранированию. Так что в тропосфере разница в скорости образования радиоуглерода между экваториальными и полярными районами всего несколько процентов.

Стратосфера же, во-первых, довольно хорошо перемешана. А во-вторых, обмен воздухом с тропосферой происходит лишь в поздневесенний довольно короткий прорыв тропопаузы на средних широтах. При этом был экспериментально замечен малый весенний избыток радиоуглерода. Но он очень мал - доли процента. А вот для других изотопов этот эффект очень сильно выражен.

Интересно, что при вариациях в магнитосфере, смещении полюсов, доминировании квадруполей возможны весьма интересные эффекты на распределение космогенных изотопов, в несколько меньшей степени на радиоуглерод. Однако на последних 10 тысячах лет таких экзотичностей не было (археомагнитные и палеомагнитные исследования - это особая и очень интересная область, с изотопным датированием перекрывается лишь постольку-поскольку).

Во-вторых, вариации углеродообменной системы.

Эта система тесно связана с климатом и отзывается на все его заметные изменения. Варьирует объем резервуаров, в первую очередь биосферы, скорость обмена между ними. А если помнить, что переходы из резервуара в резервуар часто связаны с изотопным фракционированием, а также что источник радиоуглерода лишь в одном из резервуаров - в атмосфере, а стоки - во всех, то вариации системы, очевидно, будут вызывать вариации изотопных отношений углерода в различных резервуарах. Причем это может приводить как к уменьшению фракции радиоуглерода в атмосфере, так и увеличению. Причем поскольку времена перемешивания резервуаров сильно различаются, равновесие в резервуарах будет устанавливаться в разное время. Ну а время равновесия всей системы определяется самым медленным резервуаром - глубинными слоями океана. Так что в равновесие вся система приходит лишь за время больше тысячи лет. Равновесные состояния могут отличаться установившимися изотопными соотношениями углерода. Ну а во время переходных процессов они естественно транзиентно изменяются. Как, например, сейчас. Об этом чуть далее.

Классическим примером отклика углеродообменной системы на климат являются вариации при переходе от Плейстоцена/Ледникового периода к Голоцену/современному состоянию. В особенности период Bolling/Allerod/Yonger Dryas ~12 тыс. лет назад. Тогда начавшееся и уже развившееся потепление внезапно сменилось резким похолоданием до ледниковых температур и через пару тысяч лет обратно резким потеплением. О механизме этого давайте здесь говорить не будем (но вопросы - пожалуйста).Но влияние таких скачков на углеродообменную систему было заметным. Классические переходные импульсы отклика системы в атмосферном радиоуглероде, хорошо согласующиеся с предсказаниями компьютерного моделирования, были обнаружены в сериях образцов соответствующего возраста (см. например T. Goslar et al, High concentration of atmospheric 14C during the Younger Dryas cold episode, Nature, v.377, 1995, p.414-417 или K. A. Hughen et al, Deglacial changes in ocean circulation from an extended radiocarbon calibration, Nature, v.391, 1998, p.65-68).

Другим примером работы углеродообменной системы является классический экспоненциальный хвост спадания мощного импульса радиоуглерода, инжектированного в атмосферу во время атмосферных ядерных испытаний (рис. 4). Спад атмосферного содержания 14C происходит, конечно, не за счет его распада, как можно иногда прочитать в популярных и прочих статьях, написанных какими-либо невежественными авторами. Радиоуглерод выводится из атмосферы в другие резервуары. Изотопное отношение в атмосфере было сильно нарушено, и теперь этот сигнал распространяется по другим резервуарам, пока вся система не найдет новое равновесное отношение. Атмосфера сама как резервуар уже пришла в равновесие внутри себя. Биосфера тоже на подходе. А вот океану, и верхнему и донному еще далеко. Эксперименты по измерениям радиоуглерода в океане (сотни и тысячи профилей в разных местах планеты) ясно показывают, как бомбовый сигнал медленно распространяется в глубинные воды. Сейчас он достиг глубинных вод лишь в районе северной Атлантики - важнейшего места на Земле их формирования. Но распространиться на весь океан - это дело очень далекого будущего.

Углеродообменная система может меняться не только за счет природных вариаций, но под антропогенным воздействием. Массовое сведение лесов в планетарном масштабе, начавшееся примерно два века назад и идущее до сих пор (скоро правда кончится, так как уже почти все свели) сильно сокращает емкость резервуара биосферы. Причем если мы говорим о среднем времени жизни углерода в биосфере в 40 лет, то это лишь в среднем конечно. Есть в нем "подрезервуары" где углерод живет лишь год а то и меньше - однолетние травы, например. А есть и где по много лет, даже сотни лет - те же деревья. И вот эти деревья сводятся. Углерод в них накопленный в конечном счете попадает в виде углекислого газа обратно в атмосферу. Причем углерод этот обеднен тяжелыми изотопами за счет фотосинтеза, да и добавочно радиоуглеродом за счет распада во время "жизни" там.

Все это приводит к изменению в сторону легких изотопов углерода содержащегося в атмосфере. Ну и к росту концентрации атмосферного углекислого газа тоже конечно. Причем, изотопные отношения, будучи более чувствительными, зафиксировали этот эффект на временах, когда концентрация CO2 еще не изменилась заметно. Все это экспериментально обнаружено в прямых атмосферных измерениях, в ретроспективных образцах и косвенных исследованиях, и хорошо согласуется с компьютерным моделированием. Эффект разбавления атмосферного радиоуглерода легкими изотопами за счет сведения лесов является частью эффекта Зюсса (рис. 2), о котором речь будет далее.

Первоисточник: 
Левченко В. Радиоуглерод и абсолютная хронология: записки на тему. 18-12-2001
 
 
 
 
Ошибка в тексте? Выдели ее мышкой и нажми   Ctrl  +   Enter  .

Стоит ли самостоятельно реставрировать непрофессионалу? (2018)


  1. Технические операции требуют профессиональных навыков.

  2. Представить ход работы - это одно, а сделать - совсем другое.

  3. Не каждому памятнику пригодны стандартные методики реставрации и хранения.

  4. Некоторые методики устарели из-за выявленных деструктивных последствий.

  5. Неверно подобранные материалы сразу или в будущем нанесут вред памятнику.

  6. Если возвращаете памятнику утраченную красоту, то сохраняете ли его подлинность?

________________

В этих и во многих других вопросах разбирается только квалифицированный специалист!
  • Вам в помощь на сайте представлены эксперты и мастера реставраторы.
  • Спрашивайте, интересуйтесь, задавайте вопросы на нашем форуме.
  • Обучайтесь под непосредственным руководством опытного наставника.

 

Что Вы считаете ГЛАВНЫМ в процессе реставрации? (2018)


Есть ли у вас друзья реставраторы? (2018)


Есть ли у вас друзья реставраторы? (2018)

«Дружба — личные взаимоотношения между людьми, основанные на общности интересов и увлечений, взаимном уважении, взаимопонимании и взаимопомощи». (Дружба—Википедия)

«Знакомство — отношения между людьми, знающими друг друга». (Знакомство—Викисловарь)

ЕЖЕГОДНЫЙ КОНКУРС ЛУЧШИХ РАБОТ ВЕРНИСАЖА И ВЕБ-ПОРТФОЛИО
Система Orphus

Если вы обнаружили опечатку или ошибку, отсутствие текста, неработающую ссылку или изображение, пожалуйста, выделите ошибку мышью и нажмите Ctrl+Enter. Сообщение об ошибке будет отправлено администратору сайта.