ПРО+Не используйте методические пособия в качестве самоучителя. Вам в помощь на сайте представлены эксперты и мастера реставраторы. Спрашивайте, интересуйтесь, задавайте вопросы на нашем форуме.
 

Принципы работы сводчатых конструкций, применявшихся в русской архитектуре

Общие свойства каменных сводчатых конструкций
О работе отдельных сводов

Общие свойства каменных сводчатых конструкций

Сводами обычно именуются арочные распорные конструкции сплошного сечения, протяженность которых в направлении, перпендикулярном к оси, соизмерима с пролетом. Арки представляют частный случай свода, его плоскую модель. Каждый тип свода может быть представлен как система элементарных арок или полуарок, образующих форму свода и несущих свою часть нагрузки.

Равномерное распределение нагрузки вдоль цилиндрической части свода обеспечивает каждой его элементарной арке одинаковый режим работы, т.е. аналогичные напряжения и деформации, поэтому влияние смежных участков не проявляется. Сосредоточенная нагрузка, деформирующая данный участок, включает в совместную работу и соседние полосы, причем ширина «подключения» зависит от толщины свода, способа кладки и прочности раствора. Сочетание нескольких видов нагрузки вызывает сложную деформацию распорных систем, в которой трудно выделить долю каждого вида, в том числе и преобладающего, так как нередко суммируются несимметричные прогибы.

Расчет любого типа свода включает:

  • выбор оптимальной рабочей схемы, т.е. такой системы главных и второстепенных арочных элементов, которая бы наиболее соответствовала характеру распределения усилий и действительной значимости каждого элемента;
  • определение габаритов расчетных элементов;
  • сбор и разделение нагрузки;
  • определение реакций R, распора Н и внутренних усилий — момента М и нормальной силы N расчетных элементов;
  • проверку их несущей способности по величине сжимающих напряжений в кладке.

Собственно расчет каменной арки, символизирующей самостоятельную конструкцию, отдельный деформационный блок или характерную деталь свода, может быть сведен к проверке несущей способности ее сжатой зоны.

Форма арки или свода, при которой любое сечение под действием нагрузки работает в наиболее рациональном для кладки режиме, т.е. симметрично сжато, наиболее рациональна и отвечает условию: Мх= Hfx, т.е. безмоментной кривой . На практике большинство построенных сводов по различным причинам, а также по чисто эстетическим соображениям не абсолютно рациональны, их сечения обжаты несимметрично.

Растянутая часть сечения в работе не участвует, хотя при наличии упругого раствора способна удерживать растягивающие напряжения до 0,15 МПа. Растянутая часть сечения может располагаться с внутренней или наружной поверхности свода в соответствии с характером деформации. При центральной нагрузке на свод растяжение наблюдается обычно в центральной трети пролета на нижней поверхности и в боковых третях — на верхней. Глубина растянутой части сечения растет при деформации свода пропорционально уменьшению высоты работающей сжатой зоны.

Высота сжатой зоны сечения — основной показатель устойчивости арочной конструкции, сложенной из кирпича или камня. Для любого внецентренно сжатого сечения свода высота сжатой зоны приблизительно равна удвоенному расстоянию от точки приложения нормальной силы N до ближайшего края сечения, т.е. hc = (h/2 — е)2, где hc — вы-

сота сжатой зоны; h = полная высота сечения; е= M/N— эксцентриситет приложения нормальной силы относительно центра сечения.

О работе отдельных сводов

Рабочая схема простого цилиндрического (коробового) свода представляет систему независимых параллельных арок (рис. 121,А).


121. Рабочие схемы сводов
Л — цилиндрический свод со ступенчато распределенной нагрузкой;
Б— цилиндрический свод с распалубкой;
В — цилиндрический свод с сосредоточенной нагрузкой;
Г— крестовый свод;
Д, Е — сомкнутый свод с центральной нагрузкой;
1 — элементарные арки;
2 — условное диагональное ребро;
3 — эпюра распора

Если нагрузка вдоль свода не меняется, то о его несущей способности и деформациях можно судить по работе одной элементарной арки, служащей таким образом рабочей схемой свода. Если нагрузка вдоль свода меняется ступенчато или существуют местные поперечные утолщения свода в виде гуртов и подпружных арок, то каждой ступени нагрузки или сечения соответствует своя элементарная арка, символизирующая отдельный деформационный блок.

При наличии распалубок (см. рис. 120,Б) распор и давление упирающихся в них арок передаются на опору свода вдоль ребер распалубок, обжатых подобно ребрам крестового свода. Часть распора может передаваться непосредственно вдоль оси распалубки, если ее образующие касательны к оси арок. Рабочую схему цилиндрического свода с распалубками можно представить либо как систему арок, разветвляющихся вокруг распалубок (тогда полоса сбора нагрузки на арку равна шагу распалубок или простенков), либо как систему обычных элементарных арок, упирающихся в условные арочные элементы, оконтуривающие распалубки. На практике очертание оконтуривающих «арок» определяется качеством перевязки кладки лотка и распалубки, наличием закладок, трещин и т.п. Плохая перевязка и слабый раствор предполагают очень острое огибание распалубки. То же касается любого другого, специально не оконтуренного отверстия в своде. В любом случае усилия и напряжения в кладке концентрируются вокруг распалубок, увеличиваясь по мере приближения к опоре свода в простенках. Распалубки с забутовкой между ними значительно снижают деформативность арочного контура свода, разделяя его на «активную» — пролетную и неподвижную части. Анализ деформаций сводов выявляет довольно четкую границу между этими частями, проходящую в зоне наклона радиальных швов 30—40°.

Распалубки используются в цилиндрических сводах также как средство местной разгрузки несущих стен и переноса давления на соседние участки при устройстве всевозможных проемов. Регулярное расположение распалубок позволяет иногда перенести давление и распор свода на отдельные столбчатые опоры. В целом же сосредоточенная передача опорных реакций характерна для крестовых сводов , представляющих комбинацию четырех распалубок.

Рабочая модель крестового свода (см. рис. 120,Г) — система элементарных арок, образующих распалубки и передающих давление и распор на диагональные ребра. Существуют своды, например готические, где диагонали как основные несущие элементы выполнены из более прочного, чем распалубки, материала, имеют постоянное сечение и выделены на поверхности свода в виде нервюр. Для подавляющего большинства крестовых сводов ребра служат жесткостными элементами лишь в силу естественного утолщения кладки при сопряжении смежных распалубок. Сечение и ширина таких «естественных» ребер — величина переменная и может быть определена по характеру преобладающих деформаций кладки, участвующей одновременно в работе диагонали и арок распалубки.

Диагональ испытывает неравномерное, нарастающее к пятам вертикальное давление, соответствующее опорным реакциям элементарных арок распалубки, и горизонтальную нагрузку от их распоров, направленную к углам свода, т.е. растягивающую диагональ. Суммарное действие этих двух видов нагрузки создает неравномерное обжатие сечений диагонального ребра— большое на опорном участке и очень малое в замке. Слабое обжатие замковых сечений диагоналей и, соответст¬венно, всей центральной зоны — характерная особенность крестовых сводов, вследствие чего они неспособны нести сосредоточенные центральные нагрузки.

Сомкнутый свод (см. рис. 121 Д,Е) представляет в общем случае сочетание двух пар цилиндрических или вспарушенных лотков. Рабочую схему сомкнутого свода можно рассматривать как систему элементарных полуарок, образующих лотки и передающих распор в условные диагональные ребра, а при наличии центрального светового барабана — и в его опорное кольцо. Нижней опорой (пятой) элементарные полуарки передают распор и грузовое давление на опорный контур свода. Диагональные ребра сомкнутых сводов образуются как элементы формы при сопряжении (смыкании) лотков и основными несущими элементами не являются. Главными рабочими элементами служат центральные лотковые полуарки (короткого пролета для вытянутых в плане сводов) и нижний опорный контур.

Расчет показывает, что от любого вида нагрузки опорные реакции элементарных полуарок возрастают от углов к середине. Для сводов, загруженных только распределенными нагрузками, эпюра давления лотка имеет вид простого или выпуклого треугольника, а эпюра распора— параболического (вогнутого в разной степени) треугольника — в соответствии с подъемностью свода и видом нагрузки. Суммарное давление и распор лотка численно равны площадям соответствующих эпюр. Из их анализа следует, что на среднюю треть лотка приходится приблизительно 2/3 суммарного давления и распора, а угловые трети практически не работают.

Большое обжатие центральной зоны, равное суммарному распору всех лотков, позволяет сомкнутому своду нести тяжелую центральную нагрузку (еще больше увеличивающую это обжатие). Благодаря этому свойству сомкнутый свод использовался для перекрытия большинства бесстолпных храмов XVII—XVIII вв. Сосредоточенный распор, создаваемый тяжелым световым барабаном и конструкцией завершения, гасился толщиной и замкнутым армированием несущих стен, а также двумя (четырьмя) парами перекрестных воздушных связей, которые ставились в зоне наибольших деформаций лотков. Лотки больших сводов выкладывались с гуртами. Относительное выравнивание давления и распора между средней третью и угловыми частями опорного контура достигалось различными приемами — вспарушенностью лотков, введением угловых клиновых вставок, устройством по оси лотков разгрузочных отверстий, кладкой «в елку». При пятиглавом завершении выравнивающим давление фактором служила масса угловых барабанов.

Крещатый свод может быть представлен либо как система двух пар главных пересекающихся арок, несущих тяжелую центральную нагрузку, и четырех диагональных полуарок, собирающих нагрузку с угловых частей свода, либо как система полуарок сомкнутого свода с центральными распалубками, разрезающими лотки до уровня «зеркала» или опорного кольца барабана. Вторая схема показательнее для случая, когда центральные арки не выделены технологически, например утолщением или швом. Ширина неявных главных арок в этом случае может быть определена по характеру нагрузки и другим конструктивным признакам, выделяющим центральный деформационный блок. На практике она приблизительно равна удвоенному расстоянию от края центрального проема до заделки в лоток воздушной связи. Вторая схема может быть применена для сомкнутого свода с распалубками, люкарнами и другими отверстиями, разгружающими центральные зоны лотков и опорного контура.

Конструктивную основу крестово-купольных сооружений составляет трех- или пятипролетная арочно-стоечная система (рис. 122).


122. Рабочая схема крестово- купольной системы
А — разрез;
Б — план;
В, Г— планы древних церквей с дополнительной внешней жесткостью;
N— плоский распор системы продольного или поперечного направления;
G— центр тяжести внутренней диафрагмы жесткости;
О — центр поворота;
Ne,c — усилия в воздушных и стеновых связях;
R — реакции противодействия распору внутренних и внешних диафрагм

Подпружные арки, опирающиеся на наружные стены и центральные столбы, служат основанием для цилиндрических сводов планового креста и угловых барабанов, на центральные подпружные арки опирается центральный световой барабан. Арки делят в плане сводчатую систему перекрытия на модули, создающие большие или меньшие встречные распоры. Складываясь, они создают суммарный распор системы, действующий в плоскости арок продольного и поперечного направлений или в диагональной плоскости и воспринимаемый главным образом массой кладки внутренних и внешних жесткостных элементов. Основными внутренними жесткостями служат конструкции «креста» — центральные столбы, части стен, арочные перемычки и перекрытия хор, объединенные в диафрагмы, а также пространственные угловые модули. Дополнительными внутренними жесткостями ранних храмов служили утолщения западной стены, скрывающие лестницу на хоры (церковь Георгия в Старой Ладоге), или заполнение пространства между подкупольными столбами (подобно Софии Константинопольской).

Внешними жесткостями помимо апсид могли быть лестничные башни на западных углах объема (Георгиевский и Софийский соборы в Новгороде), приделы, галереи и высокие притворы против крыльев креста (церковь Михаила Архангела в Смоленске).

Распределение суммарного распора между жесткостными элементами происходит пропорционально их сравнительной жесткости на любой стадии работы системы. Устойчивость системы обеспечивается, если опрокидывающее действие распора Нс, приложенного к своему элементу жесткости на высоте hc, меньше удерживающей реакции собственного веса и нагрузки данного элемента, приложенных с соответствующими плечами относительно точки (оси) опрокидывания. В противном случае, при избытке распора равновесие системы должно поддерживаться работой замкнутого связевого каркаса и затяжек, установленных в уровне пят подпружных арок.

Наиболее нагружены в конструкции перекрытия системы подпружные арки и паруса, несущие центральный световой барабан. Следует заметить, что функции арок и парусов при неизменной общей нагрузке могут существенно меняться в течение «жизни» памятника. В строительный период подпружные арки работают как перемычки, несущие полный вес барабана и парусов. По мере того как твердеет раствор кладки, паруса, упираясь в опорное кольцо барабана, начинают работать самостоятельно, передавая свою часть нагрузки и распора на столбы и далее на элементы жесткости. Распределение нагрузки между арками и парусами зависит от пролета перекрываемого модуля, системы и качества кладки парусов, толщины арок, наличия воздушных связей, наконец, от характера общей деформации памятника. Иногда нагрузка на подпружную арку может быть назначена «по факту», как вес блока кладки барабана, ограниченного усадочными или иными трещинами. Паруса при небольших диаметрах барабанов имеют незначительный вылет. Нагрузка на паруса передается таким образом почти по всей площади, что допускает простую кладку парусов горизонтальными нависающими рядами.

При достаточном сцеплении раствора паруса могут работать и как «кронштейны», и как распорные конструкции, воспринимающие усилие распора под углом к плоскости швов. С ростом пролетов функции таких ложных парусов, как консольных или распорных элементов, резко падают. Полутораметровый, например, ложный парус, соответствующий семиметровому пролету арок, теоретически уже не способен нести вес «своего» сектора барабана и тем более помогать подпружным аркам при их деформации. Ненадежность опирания барабана стала, возможно, одной из причин ограничения его диаметра и пролета подпружных арок.

Работа воздушных связей. Воздушные связи арочных конструкций, расположеные в разных уровнях относительно пят, могут иметь неодинаковые функции и по-разному формировать внутренние усилия в сводах.

Затяжки в уровне пят арок и сводов могут воспринимать:

полный распор, если опорные конструкции способны нести лишь вертикальную нагрузку (стойки открытых павильонов и галерей, перекрытых цилиндрическими сводами на распалубках и подпружных арках или крестовыми сводами);

«излишек распора», не воспринимаемый опорными конструкциями из-за их недостаточной устойчивости (некоторые крестово-купольные храмы и другие арочно-стоечные системы при значительных пролетах сводов и умеренных толщинах несущих стен и столбов).

Затяжки в уровне пят могут быть поставлены и конструктивно в сооружениях, где распор надежно гасится совместной работой вертикальных и горизонтальных элементов жесткости. При нормальной, спокойной статике большинства крестово-купольных сооружений роль воздушных связей в обеспечении их равновесия не является определяющей. Податливость анкеров, температурные деформации металла при морозах и пожарах, коррозия затяжек и шплинтов — все это не позволяет считать воздушные связи долговременным и равнопрочным звеном древних распорных конструкций, тем более ставить самую возможность существования памятников в зависимость от их наличия.

Воздушные связи активно работают как арочные затяжки при возведении здания и в течение всего периода твердения раствора. На этой стадии стены, столбы и диафрагмы еще не создают устойчивого контура для арок и сводов, а распор подпружных арок, несущих полный вес незатвердевшей кладки сводов и световых барабанов, намного превышает значение действительного распора от фактической длительной нагрузки. В дальнейшем, как показывают расчеты и контрольные измерения, функция воздушных связей в качестве затяжек крестово-купольной и других распорных систем может быть весьма умеренной.

Но в случае деформации объема связи могут препятствовать горизонтальным смещениям пят сводов и арок. Связи включаются в работу и при увеличении нагрузки на своды, а также при изменении общей схемы здания. Просадка опор (например, более нагруженных центральных столбов), вызывающая заметный (до 10—15 см) наклон связей в принципе не влияет на усилия в затяжках.

Первоисточник: 
Реставрация памятников архитектуры. Подъяпольский С.С., Бессонов Г.Б., Беляев Л.А., Постникова Т.М. М., 2000
 
 
 
 
Ошибка в тексте? Выдели ее мышкой и нажми   Ctrl  +   Enter  .

Стоит ли самостоятельно реставрировать непрофессионалу? (2018)


  1. Технические операции требуют профессиональных навыков.

  2. Представить ход работы - это одно, а сделать - совсем другое.

  3. Не каждому памятнику пригодны стандартные методики реставрации и хранения.

  4. Некоторые методики устарели из-за выявленных деструктивных последствий.

  5. Неверно подобранные материалы сразу или в будущем нанесут вред памятнику.

  6. Если возвращаете памятнику утраченную красоту, то сохраняете ли его подлинность?

________________

В этих и во многих других вопросах разбирается только квалифицированный специалист!
  • Вам в помощь на сайте представлены эксперты и мастера реставраторы.
  • Спрашивайте, интересуйтесь, задавайте вопросы на нашем форуме.
  • Обучайтесь под непосредственным руководством опытного наставника.

 

Что Вы считаете ГЛАВНЫМ в процессе реставрации? (2018)


Есть ли у вас друзья реставраторы? (2018)


Есть ли у вас друзья реставраторы? (2018)

«Дружба — личные взаимоотношения между людьми, основанные на общности интересов и увлечений, взаимном уважении, взаимопонимании и взаимопомощи». (Дружба—Википедия)

«Знакомство — отношения между людьми, знающими друг друга». (Знакомство—Викисловарь)

Система Orphus

Если вы обнаружили опечатку или ошибку, отсутствие текста, неработающую ссылку или изображение, пожалуйста, выделите ошибку мышью и нажмите Ctrl+Enter. Сообщение об ошибке будет отправлено администратору сайта.

ЕЖЕГОДНЫЙ КОНКУРС ЛУЧШИХ РЕСТАВРАЦИОННЫХ ОТЧЕТОВ И ДНЕВНИКОВ

БИБЛИОТЕКА РЕСТАВРАТОРА

RSS Последние статьи в библиотеке реставратора.

НазваниеАвтор статьи
УЧЕБНИК РУССКОЙ ПАЛЕОГРАФИИ (1918) Щепкин В.Н.
МАТЕРИАЛЫ И ТЕХНИКА ВИЗАНТИЙСКОЙ РУКОПИСНОЙ КНИГИ Мокрецова И. П., Наумова М. М., Киреева В. Н., Добрынина Э. Н., Фонкич Б. Л.
О СИМВОЛИКЕ РУССКОЙ КРЕСТЬЯНСКОЙ ВЫШИВКИ АРХАИЧЕСКОГО ТИПА Амброз А.К.
МУЗЕЙНОЕ ХРАНЕНИЕ ХУДОЖЕСТВЕННЫХ ЦЕННОСТЕЙ (1995) Девина Р.А., Бредняков А.Г., Душкина Л.И., Ребрикова Н.Л., Зайцева Г.А.
Современное использование древней технологии обжига керамических изделий Давыдов С.С.