ПРО+Не используйте методические пособия в качестве самоучителя. Обращайтесь к экспертам и мастерам реставрации.
 

3.4. Экологическая оценка строительных материалов по показателям их гигиенической безопасности при обосновании выбора отделочных материалов для интерьеров

В настоящее время качество сырья для производства строительных материалов и самих строительных материалов, определяемое СНиПами, ГОСТами и ТУ, в основном оценивается по технологическим и техническим характеристикам и лишь небольшая доля отдельных гигиенических требований, касающихся охраны труда и транспортировки, включена в виде показателей, практически не позволяющих оценить степень их опасности для здоровья населения.

Например, пункт 7 (Изменение № 1 ГОСТ 7251-77 «Линолеум поливинилхлоридный на тканевой подоснове. Технические условия») содержит «Требования безопасности и охраны окружающей среды» в виде конкретных требований на получение на этот материал гигиенического сертификата; отмечено, что по классификации ГОСТ 19433-88 он не является опасным грузом; указано, что основными видами возможного опасного воздействия на окружающую среду является загрязнение атмосферного воздуха населенных мест, почв в результате неорганизованного сжигания и захоронения отходов линолеума на территории предприятия или вне его, а также произвольной их свалки в непредназначенных для этого местах. Что касается отходов, которые образуются при изготовлении линолеума, строительстве и ремонте зданий и сооружений, они подлежат утилизации на предприятии-изготовителе или вне его, вывозу на специальные полигоны промышленных отходов или организованному обезвреживанию в местах, специально отведенных для этой цели. По представленным данным практически невозможно судить об опасности, которую несет этот материал человеку при эксплуатации в помещениях, жилых комнатах, детских и лечебных учреждениях, где этот материал принято использовать для отделки пола.

Приведенный пример перечисленных требований настораживает и показывает, что материал несет потенциальную угрозу здоровью человека при контакте с ним, говорит о необходимости распознавания и учета этой угрозы.

Для комплексной экологической оценки этого и других материалов необходимо знать весь комплекс отрицательных свойств и их влияние на здоровье человека, то есть его гигиеническую безопасность на всех стадиях жизненного цикла материала, а в данном случае, прежде всего, на стадии его эксплуатации, так как от выбора материала для интерьера зависит не только безопасность жилья, но и его комфорт.

3.4.1. Основные критерии безопасности и характеристики для оценки влияния строительных материалов на здоровье человека

Гигиеническая безопасность строительных материалов для человека определяется комплексом санитарно-гигиенических характеристик (СГХ), определяющих потенциальную опасность материала для здоровья человека, соответствие гигиеническим требованиям, которые предъявляются к материалам или изделиям конкретного назначения. Опасность материала может проявляться за счет загрязнения окружающей среды, например, воздуха в помещении, или за счет непосредственного с ним контакта человека. Неблагоприятное воздействие на организм обусловлено совокупностью взаимодействий между материалом, средой и человеком. Комплексом санитарно-химических характеристик (СХХ) определяется опасность выделяющихся из материала веществ, загрязняющих среду обитания человека. Санитарно-химические характеристики полимеров, наиболее широко применяемых в строительстве, приведены в Приложении III . 1.

Загрязнение среды, контактирующей с поверхностью, в первую очередь отделочных строительных материалов, происходит газообразными веществами и твердыми частичками пыли, которые образуются за счет трения. В этом случае говорят о процессе эмиссии, миграции из материала содержащихся в нем летучих соединений. Этот процесс может быть усилен условиями эксплуатации, действиями высокой температуры, радиации, механических нагрузок и др. Таким образом сама контактирующая с материалом среда может вызывать реакции, приводящие к образованию мигрирующих соединений. При этом могут образовываться так называемые вторичные загрязнители, которые также могут быть вредны для человека.

Миграция веществ в материале — сложный многостадийный процесс, продолжительность которого может составлять от нескольких часов до многих месяцев, а иногда и лет. Скорость движения мигрирующих веществ из материала к границе его раздела со средой определяется скоростью диффузии этих веществ в материале, степенью его кристалличности и другими структурными и эксплуатационно-техническими свойствами. Поэтому химический состав материала является одним из важнейших показателей целесообразности его применения при строительстве жилых и общественных зданий, т.к. концентрация токсичных веществ в воздухе помещения определяет саму возможность пребывания в нем человека. При оценке воздуха в закрытых помещениях практикуется использование ПДК, установленной для веществ, которые могут выделяться в атмосферу. Однако такую оценку нельзя считать оптимальной, поскольку воздух в закрытых помещениях существенно отличается от атмосферного (ограниченный объем, отсутствие фактора «разбавления», поглощение химических веществ строительными материалами и последующее их выделение и др.). Последние исследования показали, что для жилищного строительства при выборе материалов следует учитывать, что значения предельно допустимых концентраций (ПДК) токсичных веществ должны быть уменьшены в сотни раз* в соответствии с их кумулятивными свойствами.

В отечественной и зарубежной практике параметры проведения санитарно-химических экспериментов регламентируются весьма условно, без учета многообразия факторов, влияющих на миграцию токсичных соединений. Это приводит к плохой воспроизводимости результатов, а в ряде случаев и к неправильным выводам о гигиенических свойствах материалов. Поэтому наиболее целесообразный путь гигиенического нормирования ингредиентов строительных материалов — установление допустимых уровней миграции вредных веществ на стадии выхода материалов с предприятия-изготовителя, т.к. это позволяет контролировать их свойства в рамках предупредительного надзора. Учитывая, что в начальный период после изготовления материала вредные вещества выделяются наиболее интенсивно, и зная концентрации этих веществ на выходе материала с производства, можно определить их содержание в воздухе к моменту заселения квартир.

Неблагоприятное воздействие строительных полимерных материалов на организм человека, обусловленное, в основном, выделением вредных веществ во внешнюю среду при эксплуатации изделий, практически можно устранить только удалением такого материала из помещения. Чтобы избежать таких действий необходимо уже на стадии проектирования предопределить правильный выбор и закладывать в проект только безопасные для человека материалы или, другими словами, отказаться от применения строительных материалов, содержащих в своем составе даже микродозы опасных веществ. Это будет ориентировать и стимулировать производителей СМ на выпуск только экологичных материалов. Реализация на строительном рынке в этом случае будет также предопределена выбором потребителя — его отказом от покупки опасных материалов и отказом от применения материалов, содержащих вредные для человека вещества.

Поэтому основная задача архитектора, строителя и др. состоит в рациональном выборе материалов уже на стадии проектирования. При этом для всех материалов, независимо от области их применения, должно быть общее требование — они не должны выделять в окружающую среду вредных веществ. Всегда следует избегать применения материалов, содержащих в своем составе вредные для человека вещества.

В специальных ситуациях, например в промышленных зданиях и т.п., в случае, если нет альтернативных вариантов применения материалов, обеспечивающих заданные эксплуатационно-технические свойства, для данного функционального назначения временно допустимо использование таких специальных материалов, но в этом случае следует контролировать концентрации вредных веществ, выделяемых ими в помещении, и не допускать превышения ПДК, как это требуется в «Гигиеническом сертификате» на материал. При появлении новых, более экологичных материалов в области промышленной архитектуры следует отказываться от старых опасных СМ. Таковы современные экологически целесообразные научные подходы к выбору строительных материалов для «устойчивого строительства и реставрации» во всем мире.

Сравнение материалов по показателю ПДК следует использовать лишь при предварительной оценке применимости материала для тех или иных целей. Окончательное решение о возможности использования строительного материала, содержащего даже незначительное количество вредных веществ, в конкретных условиях эксплуатации принимается только после получения дополнительных характеристик токсикологических исследований. При выборе материалов для проекта, когда невозможно по техническим или экономическим причинам избежать применения материала, содержащего в своем составе опасные для человека вещества, необходим обязательный тщательный анализ данных о токсичности каждого выделяющегося из материала вещества. При токсикологических исследованиях строительных материалов особенно должны быть проверены и выявлены хронические воздействия на организм человека веществ малой интенсивности, вызывающих фактор привыкания, который считают отрицательным, а также кумулятивный эффект — комбинированное действие различных химических веществ. Кумуляция (накопление) особенно опасна при действии веществ в переменных концентрациях, обусловленных колебаниями в закрытых помещениях микроклимата, степени освещенности УФ лучами и др. Существенное различие в действии токсичных веществ из-за их способности накапливаться в живом организме наблюдается у людей различного возраста. Опасны алергенные свойств материала, а в ряде случаев и др. отдаленные последствия их влияния на организм. Всегда присутствует риск синергического эффекта. В случае обнаружения таких действий следует искать другой материал для замены или предусмотреть дополнительные конструкционно-технологические меры безопасности, что может оказаться гораздо дороже, чем отказ от дешевого, но вредного материала, и его замена на более дорогой, экологичный или, как его принято называть в практике мирового экологического проектирования, «дружественный» человеку материал.

Наибольшую опасность по СХХ представляют полимерные (синтетические) строительные материалы и материалы на минеральных вяжущих, полученные с применением отходов промышленности, так как для них наиболее вероятен риск содержания опасных для здоровья веществ. Применение полимерных материалов в условиях, связанных с их воздействием на человеческий организм, в большинстве случаев жестко регламентируется соответствующими гигиеническими требованиями к самим полимерам, к исходным веществам для их синтеза (мономерам, катализаторам и др.), а также к ингредиентам композиций. Перечень наиболее вредных веществ и строительных материалов, их содержащих, приведен в табл. 3.7. Перечисленные в ней материалы применять нецелесообразно прежде всего в жилых и общественных зданиях.

В зависимости от сферы применения и предполагаемых условий эксплуатации материалов и изделий существенное значение в СГХ могут иметь и др. показатели, прежде всего:

органолептические (например, запах и привкус материала или контактирующих с ним сред);

физиолого-гигиенические (например, температура поверхности кожи приконтакте с материалом);

физико-гигиенические (коэффициент теплопроводности, который в гигиенической практике принято называть коэффициентом теплоусвоения, водо- и паропроницаемость материала, его электризуемость);

микробиологические (влияние материала на развитие микроорганизмов).

Важное значение при оценке по этим показателям приобретают эксплуатационно-технические свойства материалов — такие как пористость, водопоглощение, плотность, воздухопроницаемость и др.

При органолептических исследованиях строительных материалов наибольшее внимание уделяется оценке их запаха, т.к. посторонний запах в помещении отрицательно влияет на состояние организма, вызывая ощущение дискомфорта, нередко — сильные головные боли, тошноту, приступы бронхиальной астмы и др. нарушения дыхания, а у нервных и больных людей — утяжеление основного заболевания. Запах материалов оценивают в лабораторных и эксплуатационных условиях; в первом случае используют специальные камеры-генераторы. Одорометрические исследования образца строительного материала проводятся с целью определение наличия, интенсивности и характера запаха, создаваемого химическими веществами, выделяющимися из исследуемого материала. Для оценки служит 6-балльная шкала:

0 — (отсутствие запаха) — запах не отмечается ни одним из наблюдающих;

1 — (очень слабый запах) — запах обнаруживается только наиболее чувствительными наблюдателями;

2 — (слабый запах) — запах не привлекает внимания наблюдающих, но отмечается, если экспериментатор укажет на его наличие;

3 — (заметный запах) — легко ощутимый запах, дающий основание утверждать, что он обусловлен примененными полимерными материалами;

4 — (отчетливый запах) — запах, обращающий на себя внимание;

5 — (сильный запах) — запах, исключающий возможность длительного пребывания человека в помещении.

Интенсивность запаха материала, предназначенного для применения в жилых помещениях, детских и лечебных учреждениях, не должна превышать 2-х баллов по приведенной выше шкале.

СГХ строительных материалов и, в первую очередь, с применением полимерных материалов, обязательно включает оценку их физико- и физиолого-гигиенических показателей. Например, для покрытий полов главным интегральным показателем свойств материала является коэффициент теплоусвоения. Этот показатель определяет тепловой комфорт помещений. Полимерные покрытия полов отличаются от деревянных худшими теплозащитными свойствами, что иногда приводит к учащению простудных заболеваний. Поэтому для зданий различного назначения установлены оптимальные коэффициенты теплоусвоения полимерных покрытий полов: для жилых и общественных помещений (зданий) он не должен превышать 10 ккал/(м*0,5 ч°*С), для промышленных предприятий и общественных зданий, в которых человек пребывает кратковременно, 12 ккал/м*0,5 ч°*С.

При оценке теплозащитных свойств используют, кроме того, такие физиолого-гигиенические характеристики как субъективные показатели теплоощущения испытуемых (по 5-балльной шкале — жарко, тепло, нормально, прохладно, холодно) и температура их кожи после физиологического эксперимента.

При оценке пригодности строительных материалов, в частности покрытий для пола, нормируют также показатель, характеризующий накапливание на их поверхности статического электричества. Критерием для гигиенической оценки статического электричества является: наличие жалоб населения на разряды статического электричества при нормальной относительной влажности воздуха в помещении (напряженность поля статического электричества недопустима более 20 кВ/м у поверхности эксплуатируемого пола, что соответствует пороговой величине восприятия человеком разрядов статического электричества). Уже при напряженности поля более 15 кВ/м отмечены сдвиги в активности ферментов, а также некоторые изменения белков плазмы крови.

На состояние организма влияет также знак заряда: положительный действует неблагоприятно, отрицательный.— благоприятно (кожа человека приобретает заряд, противоположный знаку заряда материала).

Электризуемость образцов материалов для покрытий полов оценивают в специальной камере при комнатной температуре и относительной влажности воздуха 30—35%. Время стекания заряда до остаточного потенциала 0,2 кВ, соответствующего пороговой величине восприятия зарядов статического электричества человеческим организмом, должно быть не более 60 сек.

Гигиенические испытания строительных полимерных материалов должны предусматривать микробиологические исследования — оценку воздействия материалов на микрофлору помещений. Определяется сапрофитная микрофлора, наличие которой важно с санитарной точки зрения. При исследовании материалов, используемых в строительстве лечебных учреждений, кроме того, определяется выживаемость патогенной микрофлоры (главным образом гноеродных кокков). В некоторых полимерных материалах микроорганизмы находят питательные субстраты, стимулирующие их размножение и развитие. Микробиологические исследования проводят путем бактериологического анализа воздуха помещений и смывов или отпечатков с поверхности изделий. Следует обращать внимание, что некоторые материалы обладают выраженными противомикробными свойствами, например, материалы на основе поливинилхлорида, а также полимербетон на основе мономера ФА (фенола-альдегида), что расценивается как отрицательное явление, так как эти вещества относятся к опасным загрязнителям воздуха.

3.4.2. Экологические пути улучшения санитарно-гигиенических свойств отделочных строительных материалов

Одним из эффективных способов улучшения санитарно-гигиенических свойств полимерных материалов для архитекторов и реставраторов является отказ от использования того из них, который содержит вредные, токсичные вещества и оказывает другие неблагоприятные воздействия на человека. В этом случае производитель будет искать пути повышения безопасности продукции и, прежде всего, при этом следует ожидать повышение его экологического качества, В случае, если анализ безопасности материалов проводится для реставрационных проектов, необходимо предусматривать использование защитных средств для исключения прямого контакта человека с опасными материалами. Этот же прием может быть использован и в новом строительстве, если выбранный материал по санитарно-гигиеническим параметрам содержит вредные вещества, но для выбора по эксплуатационно-техническим параметрам нет альтернативных вариантов.

Направленное изменение санитарно-гигиенических свойств полимерных материалов имеет очень важное значение, т.к. при неудовлетворительной СГХ их применение может быть запрещено даже в случаях, если они обладают всем комплексом необходимых эксплуатационных свойств.

Для улучшения СГХ могут быть использованы нижеследующие приемы.

На стадии производства:

1) подбор соответствующих условий синтеза, при которых полимер образуется с минимальным содержанием остаточного мономера;

2)  применение полимеров, при синтезе которых были использованы физические методы инициирования, например, повышенные температуры, УФ- или гамма-облучение (такие полимеры не содержат примесей токсичных инициаторов и катализаторов);

3)  использование для создания композиции полимеров и ингредиентов, тщательно очищенных от токсичных примесей;

4)  подбор параметров технологической переработки полимерного материала, при которых может быть получено изделие с минимальным содержанием токсичных и летучих соединений;

5)  введение в полимеризационную систему (или в композицию при ее переработке) веществ, реакция которых с токсичными соединениями приводит к образованию нетоксичных продуктов;

6)  вакуумирование и (или) прогрев материала (или изделия) перед эксплуатацией с целью уменьшения содержания в материале летучих веществ. При такой обработке не должны изменяться основные эксплуатационные свойства полимерного материала, поэтому для предупреждения деструкции полимера термообработку часто проводят в среде инертного газа;

на стадии строительства и эксплуатации:

1) длительное хранение готового материала или изделия перед его использованием. Этот самый простой, но не всегда достаточно эффективный прием снижения количества мигрирующих соединений, широко применяют, в частности, для улучшения гигиенических свойств полимерных строительных материалов;

2)  нанесение на поверхность материала (или изделия) защитного слоя, например кремнийорганического покрытия или др. материалов.

Перечисленные мероприятия способствуют появлению на строительном рынке новой продукции, в которой использованы безопасные для человека вещества и материалы.

Примечания:

* Гусев Б.В., Дементьев В.М., Миротворцев И.И. Нормы предельно допустимых концентраций для стройматериалов жилищного строительства//Строительные материалы, оборудование, технологии XXI века. - №5/99.

Первоисточник: 
Экология. Основы реставрации. В.П. Князева М., 2005
 
 
 
 
Ошибка в тексте? Выдели ее мышкой и нажми   Ctrl  +   Enter  .

Стоит ли самостоятельно реставрировать непрофессионалу? (2018)


  1. Технические операции требуют профессиональных навыков.

  2. Представить ход работы - это одно, а сделать - совсем другое.

  3. Не каждому памятнику пригодны стандартные методики реставрации и хранения.

  4. Некоторые методики устарели из-за выявленных деструктивных последствий.

  5. Неверно подобранные материалы сразу или в будущем нанесут вред памятнику.

  6. Если возвращаете памятнику утраченную красоту, то сохраняете ли его подлинность?

________________

В этих и во многих других вопросах разбирается только квалифицированный специалист!
  • Вам в помощь на сайте представлены эксперты и мастера реставраторы.
  • Спрашивайте, интересуйтесь, задавайте вопросы на нашем форуме.
  • Обучайтесь под непосредственным руководством опытного наставника.

 

Что Вы считаете ГЛАВНЫМ в процессе реставрации? (2018)


Есть ли у вас друзья реставраторы? (2018)


Есть ли у вас друзья реставраторы? (2018)

«Дружба — личные взаимоотношения между людьми, основанные на общности интересов и увлечений, взаимном уважении, взаимопонимании и взаимопомощи». (Дружба—Википедия)

«Знакомство — отношения между людьми, знающими друг друга». (Знакомство—Викисловарь)

ЕЖЕГОДНЫЙ КОНКУРС ЛУЧШИХ РАБОТ ВЕРНИСАЖА И ВЕБ-ПОРТФОЛИО
Система Orphus

Если вы обнаружили опечатку или ошибку, отсутствие текста, неработающую ссылку или изображение, пожалуйста, выделите ошибку мышью и нажмите Ctrl+Enter. Сообщение об ошибке будет отправлено администратору сайта.